

Darlington Transistors NPN Silicon

BC517

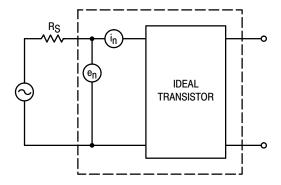
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCES	30	Vdc
Collector-Base Voltage	VCB	40	Vdc
Emitter-Base Voltage	VEB	10	Vdc
Collector Current — Continuous	IC	1.0	Adc
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	625 12	mW mW/°C
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{ heta}$ JC	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 2.0 mAdc, V _{BE} = 0)	V(BR)CES	30	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	V(BR)CBO	40	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 100 nAdc, I _C = 0)	V(BR)EBO	10	_	_	Vdc
Collector Cutoff Current (VCE = 30 Vdc)	ICES	_	_	500	nAdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ICBO	_	_	100	nAdc
Emitter Cutoff Current (V _{EB} = 10 Vdc, I _C = 0)	IEBO	_	_	100	nAdc

BC517

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS(1)					•
DC Current Gain (I _C = 20 mAdc, V _{CE} = 2.0 Vdc)	hFE	30,000	_	_	_
Collector–Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 0.1 mAdc)	VCE(sat)	_	_	1.0	Vdc
Base–Emitter On Voltage (I _C = 10 mAdc, V _{CE} = 5.0 Vdc)	VBE(on)	_	_	1.4	Vdc
SMALL-SIGNAL CHARACTERISTICS	:	•		•	
Current–Gain — Bandwidth Product(2) (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 100 MHz)	fΤ	_	200	_	MHz

^{1.} Pulse Test: Pulse Width ≤ 2.0%.

Figure 1. Transistor Noise Model

^{2.} $f_T = |h_{fe}| \cdot f_{test}$

BC517

NOISE CHARACTERISTICS

 $(V_{CE} = 5.0 \text{ Vdc}, T_{A} = 25^{\circ}C)$

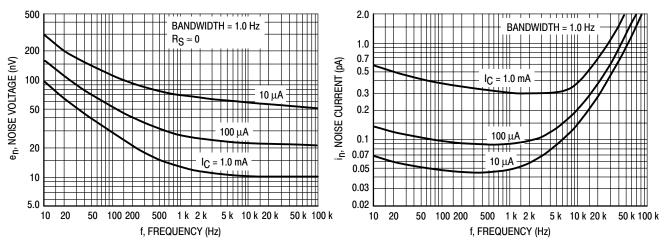


Figure 2. Noise Voltage

Figure 3. Noise Current

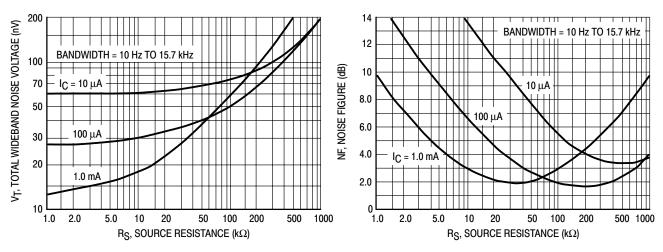
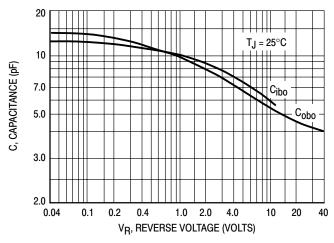
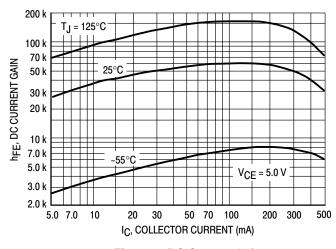



Figure 4. Total Wideband Noise Voltage

Figure 5. Wideband Noise Figure


SMALL-SIGNAL CHARACTERISTICS

V_{CE} = 5.0 V Infel, SMALL-SIGNAL CURRENT GAIN f = 100 MHz T_J = 25°C 2.0 1.0 8.0 0.6 0.4 0.2 2.0 20 50 100 200 500 0.5 1.0 0.5 10 IC, COLLECTOR CURRENT (mA)

Figure 6. Capacitance

Figure 7. High Frequency Current Gain

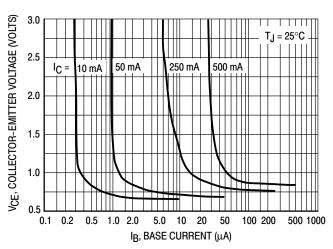
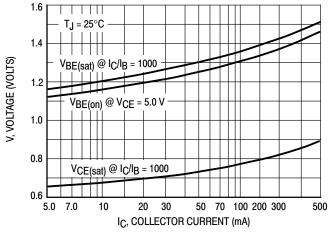



Figure 8. DC Current Gain

Figure 9. Collector Saturation Region

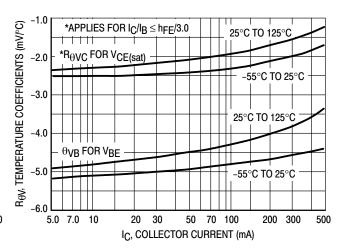


Figure 10. "On" Voltages

Figure 11. Temperature Coefficients

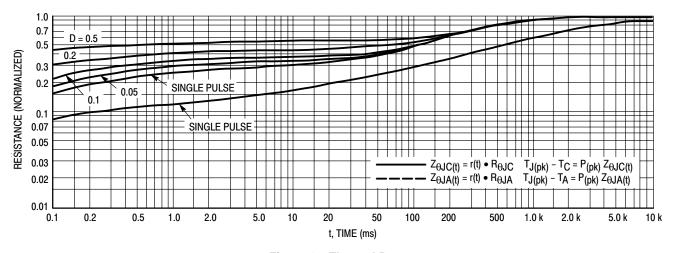


Figure 12. Thermal Response

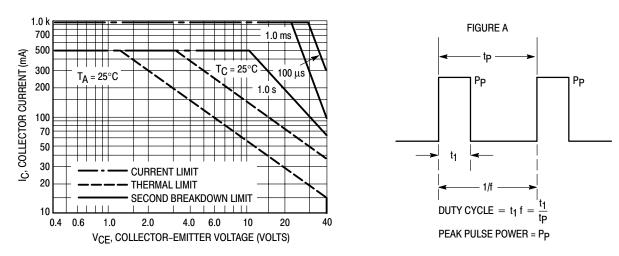
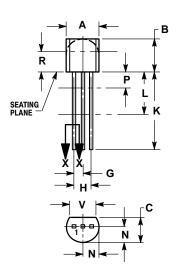



Figure 13. Active Region Safe Operating Area Design Note: Use of Transient Thermal Resistance Data

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AL

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BC517

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.